
the W

yer

Hi/O2
Unclas
0061460



L



NASA Contractor Report 4419

On the Wall-Normal Velocity

of the Compressible

Boundary-Layer Equations

C. David Pruett

Analytical Services & Materials, Inc.

Hampton, Virginia

Prepared for

Langley Research Center
under Contract NAS1-18599

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1991



i

Z



ON THE WALL-NORMAL VELOCITY

OF THE COMPRESSIBLE BOUNDARY-LAYER EQUATIONS

C. David Pruett'_

Analytical Services and Materials, Inc.
107 Research Drive

Hampton, Virginia 23666

SUMMARY

We consider a problem which arises in the numerical solution of the compressible two-dimensional or

axisymmetric boundary-layer equations. Numerical methods for the compressible boundary-layer equa-

tions are facilitated by transformation from the physical (x,y) plane to a computational (_,rl) plane in

which the evolution of the flow is "slow" in the time-like _ direction. The commonly used Levy-Lees

transformation results in a computationally well-behaved problem, but it complicates interpretation of

the solution in physical space. Specifically, the transformation is inherendy nonlinear, and the physical

wall-normal velocity is transformed out of the problem and is not readily recovered. Conventional

methods extract the wall-normal velocity in physical space from the continuity equation, using finite-

difference techniques and interpolation procedures. The present spectrally-accurate method extracts the

wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity

equation free as a check on the quality of the solution. The present method for recovering wail-normal

velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the

compressible boundary-layer equations, results in a discrete solution which satisfies the continuity equa-

tion nearly to machine precision. As demonstration of the utility of the method, the boundary layers of

three prototypical high-speed flows are investigated and compared: the fiat plate; the hollow cylinder;

and the cone. An important implication for classical linear stability theory is also briefly discussed.

-_This work was conductedpartially during the author's period of tenure as a National Research Council Associate at
NASA Langley Research Center. Completion of the work was accomplished under NASA Contract NASI-18599, Task
C-3, by the Theoretical Flow Physics Branch, Fluid Mechanics Division, NASA Langley Research Center, with Analyti-
cal Services and Materials, Inc.
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1. INTRODUCTION

In modern aerodynamics, the boundary-layer approximation is an invaluable tool of widespread

applicability. Although it is still beyond the capability of existing supercomputers to solve the

compressible Navier-Stokes equations for complete aerodynamic configurations, it is commonplace for

engineering purposes to patch inviscid "outer" solutions to/he Euler equations with "inner" solutions to

the boundary-layer equations to obtain realistic lift and drag estimates. A different application, and the

motivation for this work, lies in the area of stability and transition, for which solutions to the

boundary-layer equations provide the mean velocity and temperature distributions necessary for linear

and nonlinear stability analyses. In this latter context, accuracy is quite important, since, in general, the

stability of wall-bounded flow is extremely sensitive to variations in the mean.

The boundary-layer equations define an initial-boundary-value-problem (IBVP) in which the

streamwise spatial coordinate is time-like. The solution is obtained by streamwise marching procedures.

The equations are extraordinarily "stiff", particularly for high-speed compressibIe flow. Consequently,

only implicit marching techniques have met with practical success (for example, see the finite-

difference method of Harris and Blanchard [1], or the spectral collocation method Of Pruett and Streett

[2]). Depending on the geometry of the flow, the time-like derivative may either enhance or undermine

the diagonal dominance of the Jacobian used in the iteration procedure. To facilitate the numerical

solution it is customary to transform the boundary-layer equations from physical (x,y) space to a com-

putational (_,T1) space in which the time-like derivative has "nice" properties. In the ideal situation, a

similarity solution exists, and the time-like derivative vanishes identically with the proper similarity

transformation. Similarity solutions exist, however, only for a limited class of flows (e.g.; flow over a

flat plate in the absence of a streamwise pressure gradient). For non-similar flows, it is desirable that

the time-like evolution in the transform plane be "slow", and that the time-like derivative contribute to

diagonal dominance of the Jacobian.

One transformation which exhibits these traits for a wide class of boundary-layer flows is that

known commonly as the Levy-Lees transformation [3]*. Although the Levy-Lees transformation results

in a computationally well-behaved problem, it complicates interpretation of the results in physical
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space, relative to the more straightforward transformations used for specialized applications by Duck

[4], and by Pruett and Strcett [2]. First, it is inherently nonlinear, an additional reason why fully-

implicit methods are necessary. Second, the physical v-velocity is transformed out of the computa-

tional problem and is not easily recovered. For some applications, this is not of major concern. For

example, classical linear stability analyses, v, hich invoke the parallel-flow approximation, disregard the

wall-normal velocity. It is now recognized, however, that the non-parallel effects on the stability of a

high-speed flow can be significant [5], and methods are being adapted and developed to treat non-

parallelism. Among these are spatial direct numerical simulation (SDNS) [6], multiple scales analyses

(MS) [7,8], and a recent scheme based on the parabolized stability equations (PSE) [9,10]. Each

requires accurate determination of wall-normal velocity, and the MS and PSE methods require its gra-

dient as well. The quality (smoothness) of the solution is of particular importance whenever the appli-

cation requires differentiated velocities.

Conventional methods exploit finite-difference techniques and obtain the wall-normal velocity

from the continuity equation (J. E. Harris, private communication). The method presented here,

designed as a companion to the spectral collocation method for the compressible boundary-layer equa-

tions (CBLE) developed by Pruett and Streett [2], enjoys two major advantages over conventional

approaches. First, the wall-normal velocity is computed to spectral accuracy. Second, the wall-normal

velocity is extracted directly from the coordinate transformation, leaving the continuity equation avail-

able as a check on the quality of the solution. Using the method of [2] for the CBLE, and the present

method to extract wall-normal velocity, we obtain a discrete solution which satisfies the continuity

equation nearly to machine precision. Moreover, we obtain second derivatives of temperature and velo-

city distributions which are smooth to at least seven decimal places.

At the heart of the present method lies the non-trivial evaluation of the quantity rl_. In the next

section the governing equations and non-dimensionalization are discussed, and the Levy-Lees transfor-

mation is presented. The third section details the numerical method, focusing on two independent

*White [3], however, refers to this as the 1]lingwort.h-Levy-Lees-Dorodnitsyn-Probstein-EUiot transformation,

mentioning also the contribution of Mangler.



derivations for r L, both of which lead to complicated expressions. In the fourth section, in which we

validate the method, both derivations of rl_ are shown to give virtually identical numerical results. The

fifth section provides an application of the method whereby the high-speed boundary layers of a fiat

plate, a hollow cylinder, and a sharp cone are compared, with particular attention to their respective

wall-normal velocity distributions. An important implication regarding the linear stability of the flow

along a cone is also discussed. Finally, brief concluding remarks are offered in the last section.

_=

2. GOVERNING EQUATIONS

We consider the laminar boundary-layer flow along a two-dimensional or axisymmetric body it

zero angle of incidence. In regions of the flow in which the boundary-layer approximation is valid, the

flow is governed by [1]

_-x(r pu) + _(r/PO) = 0 (la)

au _Ou ___p_ I a [rJ_tau ]
9U_x + p V-_y = ax + r---] ay L a._ j

aT OF aT ap
÷ UTx+

(lb)

1 (lc)
rJ'Pr a_ L -a_j La; j

p = " -'pT (ld)
7

y : _'_-y ; _ = 4Rb-v (le)

Dimensionless equations (la,b,c) are derived from the compressible Navier-Stokes equations via the

boundary-layer approximation [3], and describe, respectively, conservation of mass, streamwise momen-

tum, and energy. Equation (ld) is the equation of state, and Eq. (le) defines a convenient scaling.

Here, we assume the fluid to be an ideal gas. For j=0 and j=l, Eqs. (1) describe, respectively, two-

dimensional and axisymmetric boundary-layer flow.

In Eqs. (1), x is the arc length along the body measured from the stagnation point, y is the wall-
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normalcoordinate,andr = r 0 + ycos0 is the radial coordinate from the axis of revolution, as shown in

Fig. 1. In general, r0 = to(X) and 0 = _(x). Two axisymmetric bodies of particular interest here are

the cone and the hollow cylinder, the latter of which is the axisymmeaic analog of the fiat plate. For

the cone, @ is the (fixed) cone half-angle, and ro(x ) = xsint_. For the hollow cylinder, r 0 is the (fixed)

radius, and _ = 0.

In Eqs. (1), u and v denote dimensionless velocity components in the x and y dimensions,

respectively. The remaining dimensionless variables T, 19, It, and 1,:are, respectively, the temperature,

density, viscosity, and thermal conductivity. Lengths are normalized by an arbitrary reference length

L*, and flow quantities are normalized as follows:

" " 0'U V

u : , ; v :--7- ; p= , ; (2)
Rr Ur Pr

T , p=--_ •_ • , g= ; _-
T; * *2 * *

OrUr gr _r

Throughout this paper, dimensional quantities are denoted by an asterisk. In Eqs. (2), the reference

velocity u_ and the reference density p_ are arbitrary, and the reference temperature, viscosity, and ther-

mal conductivity are defined as

,2

, Ur , * _*r; = -=-r ; _, = ix"(_¢) ; _r -- (_')
Cp

(3)

Governing equations (1) are closed by assuming Ix(T) and n(T) to vary according to the Sutherland law;

namely,

T:_'2(I+C1) 198.6 °R

IX= _¢= T+C1 ; C1 - T2 (4)

The dimensionless parameters which arise as a result of the scalings in Eq. (2) are the Mach

number M, Reynolds number Re, the Prandtl number Pr, and the ratio of specific heats )'. Specifically,

these are defined as
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u; p;u;L* G_t; C_

M = --7 ; Re = -----z---- ; Pr - , ; Y = C_
a_ [[r _r

(5)

where a* = _ is the reference speed of sound, R s is the ideal gas constant, and C_ and Cv are,

respectively, the specific heats at constant pressure and constant volume. For ideal gases, C_ and C_

are constant, and R; = C_ - C*,

The Levy-Lees transformation [3], commonly used to facilitate the numerical solution of Eqs. (1),

has the following form:

J_

_(x ) = I9 eue gt, r_idx (6a)

4ffe'peuer_ _ . n

- jo,, (6b)

= = ycos_ (6c)
1 + (j=l)

ro

In Eqs. (6) and subsequent discussion, subscript "e" denotes edge values, which, in general, depend on

x. With the further transformations

u T
F = -- ; 0 - (7a)

ue Te

Oeu,p., rozj LOx

governing Eqs. (1) take the following form in the transform plane [1]:
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a___VV2"aF
cgrl+ g-_-+F=0

2___+v_F _ It2Jt.tOF1 2__du,(F2

an e

We note that transformed governing equations (8) make use of

(8)

_p___ 1 (9)
p, 0

which is obtained from the equation of state (ld) and the boundary-layer approximation -_y --- 0.

In the experience of the author, transformation (6) is essential for the accurate numerical solution

of a non-similar boundary-layer flow in which the streamwise velocity profile becomes "thinner" as one

proceeds downstream; e.g., boundary-layer flow along a sharp cone. For example, when the spectral

collocation method of Pruett and Streett [2] using the straightforward transformation of Duck [4] is

applied for the case of M, =6.8 flow over a 7° half-angle cone, the Jacobian of the iteration procedure

becomes very ill-conditioned. For a highly-resolved grid the condition number can be 0(10 as) or

larger. In contrast, when transformation (6) is incorporated into the method, the condition number for a

highly-resolved grid is typically O (10s). In the former case, the extreme ill-conditioning prevents full

convergence of the iteration procedure, resulting in an excessively noisy solution.

3. NUMERICAL METHODS

From Eqs. (7b) and (9) one obtains the following expression for the wall-normal velocity v in the

transform (_,rl) plane:

4___ 0 u, l-t, r 2ojV F _xx]v(_'rl) = ,l-R-e r--']" 2_ Pe "
(10)
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Providedthequantitieson therighthandsideof Eq.(10)areknown,thedeterminationof v is trivial.

The difficulty with Eq. (10), however, is that a closed-form expression for _x is not readily available,

nor is its form simple. Because of the complicated nature of rl_, we present two independent deriva-

tions which we then use for (numerical) cross-validation. In the first method, rl_ is obtained from the

Jacobians of transformation (6) and its inverse, in the second method, "q_ is shown to be the solution

of a linear Fredhohn integral equation whose coefficients are constructed from information available

from the solution of Eqs. (8). For both methods, the computational effort required to evaluate rl, (and

subsequently v) is insignificant relative to that required to solve boandary-layer Eqs. (8).

Before proceeding, we note that the evaluation of t in the boundars,-layer Eqs. (8), and both

methods for evaluating rl_, make use of the inverse transformation corresponding to Eqs. (6). Whereas

the inverse of (6a) is straightforward and is omitted, the inverse of (6b) requires the solution of a qua-

dratic equation which results in the following numerically-stable form:

_ _._t_e pe ue !Od rl = y zD (j=0)

y (_,rl) -/-- 2_yzo __

Lr0(1 + 41-+--C-) 0'=1)

(1 la)

where

C (_,rl) -_ 2cosO yzo il lb)
ro

Note that the planar (j=0) expression must be evaluated to obtain Y2D prior to evaluation of the

axisymmetric (j=l) expression.

Method 1

From Eqs. (6) we obtain
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(12a)

(12b)

_ o_ _yd__ (12c)
0x _y 0k dx

To derive Eqs. (12) we have made use of the fact that the product of the Jacobians of transformation

(6) and its inverse must yield the 2x2 identity matrix. Two of the factors necessary to evaluate (12c)

are easily obtained from Eqs. (6). They are

d_q_g_
= p, uekt, r 2) (13a)

dx

Oy _ "1_0

_l _ p, ue r j
(13b)"

The remaining factor yg is complicated. After straightforward though tedious differentiation of Eq. (11)

with respect to _, we obtain

I[1 1 dO. 1 d.e] vN _ao_ _ ay_o£_ de d_ u, --_jyzo + R,/_,u, J0_ -an = 0_ 0=°)

tan*_JY-_-_-+_n*-_JW_- rdl-7C at 0"=I)
d¢_ 1 [ 2 dro ,. _d_l Y2o + 1 3Y2o (14)

"1

LLrod_

We note that Leibnitz' Rule has been exploited for differentiation beneath the integral sign in Eq. (lla).

As in the case of Eq. (11), one must evaluate the planar (j=0) expression prior to the axisymmetric

(j=l) expression. The wall-normal velocity v follows immediately from Eqs. (14), (12c), and (10).

Derivatives of the edge and geometry data x(_)e (p, ,ue ,g, ,ro,_) are evaluated by the chain rule as

follows:

dz _ dz __d_ dx( )-_ (15)
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where _.v__.zis given in Eq. (13a). We defer discussion of the procedure for numerically evaluating thedx

integral expressions in Eqs. (11) and (14) until after the the presentation of Method 2.

Method 2

First, some mathematical preliminaries are in order. In the steps to follow, we exploit the chain

rule

ao _ ao a_a_k+ a__0_0__
ax at ax an ax

(16)

and the integral transformation

i

I =

Y

where h is an arbitrary function of (_,rl) with _ fixed, and where -_- is given in Eq. (13b).

Differentiating transformation (6b) with respect to x, we obtain

aq _3 a p. _3 du, ___ a_4____+
ax (x'y)= pZ--_-- + u,---dx + j - 2_ dx q_ -_XJo_aY (18)

By applying Leibnitz' Rule to differentiate under the integral sign, and by invoking the product rule, we

obtain

_ _t , ill _t t _0] _1 _t, Y, t 30Jo- ayffxJ_ay = dy = -

_t
From definition (6c) and some algebraic manipulation, the following expression for _ results:

(19)

_xx - j no + - (1 - t) (20)
r0

Expanding the first integral-expression on the right hand side of Eq. (19) using Eqs. (17) and (20), we
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obtain the following expression in terms of (_,'O):

I "_I ot. . ,'_ 1
_-O-_x ay = ) "l-R-eg, u,r _ ro Jotd_

Similarly, the second integral expression on the right hand side of Eq. (19) is derived to be

(21)

r

t O0 . 42--_ id_n 1 O0 __-_x ay = R4"R'e-ep, u, rg ---_ !-_-_d,I

O0
where chain rule (16) has been invoked for -fiX-X"

i l 00 3q ]+ dq
003rl 3x

(22)

The desired integral form is obtained by combining Eqs. (18-22), whereby

O__ [.1 dp,(_.n)= pT-_-- +

+j/tan+d+ + ---
r=

L _

Idu. ld_ d_]u, dx 2_ dx j tanO

1 dro] n,1 . dk_l O0 , nl 30 3"q :

(23)

We note that certain terms containing ----
1 dro

ro dx
have exactly canceled in the derivation of Eq. (23).

Expression (23) is a linear Fredholm integral equation of the form

rl

q (_,rl) = !w (_,rl)q (_,rl)drl + p (_,rl)
(24a)

where

(24b)

w(_,n) = _
-1 30

(24c)

p(_,rl) = f (_)rl + g (_)d (_,rl) - e (_,rl) (24d)
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andwhere

1 do,, 1 du, 1 d_ de#

f(_)- p, dr + (24e)u, dr 2_ dr jtan0dr

g(_)--j[tan_-_ + l___]r0 (_f)

n 1

d (_,n) = _[Tdn (24g)

d_l ao_
e (_,rl)= --_-jo-_--_al]

(24h)

We relegate the details of the discretization of Eq. (24a) to the Appendix. We note, however,

that Eq. (24a) is linear and its matrix analog is N th-order; consequently, the computational effort neces-

sary to extract v is insignificant relative to that of solving Eqs. (8), which require the iterative solution

of systems of order 3M.

In practice, whether by Method 1 or Method 2, evaluation of rl, occurs along contours of con-

stant _. For _ fixed, the integrals which appear in both methods (for example; in Eqs. (13) and (24))

assume the form

i (rl) = fh (rl)drl (25)
0

where h is again an arbitrary function of 11. It remains to describe their spectrally-accurate numerical

approximation. For this purpose, let the computational domain 0 < r] _<rlMax be partitioned into N

subintervals such that 0=q0<ql<Xh< - • - <qS=rlMAX. At the grid points rl, we have

II (n=0)

i(q.) = y]Ai(rlk ) ; A/(rl.) - fn!_n. (26)k=o lh('q)drl (n =l,2,...,N)

If h.---h(q.), and i. and Ai. are the discrete approximations of i(rl.) and Ai(rl. ), respectively, then the
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discreteanalogof Eq.(26)is thefollowing:

n

i,_ = y_Aik ; z_l = Q h_ (27)
k=0

In Eq. (27) Q is an N×(N+I) quadrature operator, and, for convenience, the following vector notation

is adopted:

ho h

hi _ h

_- i ; h,- '

.hN.

(28)

Conventions similar to Eqs. (28) hold for all other vector quantities.

Eq. (27) is general in the sense that Q can represent any quadrature rule. For example, if the tra-

pezoidal quadrature rule is adopted, then Q is bidiagonal and i' approximates i(rl) to second-order

accuracy. For the hydrodynamic stability applications which motivate this work, we are interested in

attaining highly accurate and smooth solutions. Accordingly, we specialize Q to a collocation method

based on Chebyshev polynomial approximation, for which Q is a dense matrix and for which spectral

accuracy is attained. The collocation method applied here to the extraction of the wall-normal velocity

is described in [2], to which the reader is referred for greater detail. For completeness, we summarize

briefly below.

Let continuous non-periodic function h (I'1) on [-1,1] be approximated by a finite series expansion

hN(TI) in an orthogonal basis set of Chebyshev polynomials T,, (_), namely

N

hN (¢1) = _ h. T,_(¢1) (29a)
n=0

Tn (_)= COS [rl COS-I_] (29b)

where coefficients /_. are termed the "spectrum" of hN(?l). Using the "natural" Gauss-Lobatto set of
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collocation points

rl_ = cosz_ ; z, N , (n = 0,1,2,...,N) (30)

we obtain from Eq. (29) the discrete Fourier cosine transform

N. n/r.k
h_ = hN (fin) = _ hk cos

_=o -N (31)

The corresponding discrete inverse transform gives the spectrum /_,, namely

2 _ hk cos nrd: (32a)
h" - Nc,, _=o ck N

where

21 k =O or k =Nck = 0<k <N (32b)

It is convenient to express Eq. (32) as a matrix-vector operation

i?: _:

h = PNh' (33)

where PN is a dense (N+I)x(N+I) matrix whose elements are available by inspection from Eqs. (32).

Interpreted in the light of transform pair (31) and (32), Eqs. (29) define the spectral interpolation

polynomial, exact, by definition, at the collocation points. Unlike polynomial interpolating series defined

on equally spaced intervals, series (29) converges uniformly to h 0]) as N_. Moreover, it can be

shown that, for continuously differentiable functions h, coefficients /_ decay to zero faster than any

finite power of 1/N as N--->_. This is termed "spectral convergence".

Now, to form quadrature operator Q we consider

_n _In _n N N l'ln

f h(_)drl---En = f hu(rl)d_ = f EhkTk(_)d_ = _/'z_, f T,(_)d_l
gin 1 _n-1 "fi_-I k=O k=O "fin-I

(34)

m

m

D
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In matrix-vector form, Eq. (34) becomes

_'_ = RN_' (35)

where ffl is an N-vector and RN is a dense N×(N+I) matrix whose elements are obtained from Eq.

(34) with the help of Eqs. (29) and (30) as follows:

(k = 1,2,...,N)
R k,, = - S sinz cos(kz )dz (n = 0,1,2,...,N)

Zk-1

From Eqs. (33) and (35) the N×(N+I) spectral quadrature operator Q is defined as

(36)

Q = RNPN (37)

We note that a continuous mapping _---rl(_l) is necessary to take the natural Chebyshev domain

-1<I'1<1 onto the computational domain 0__rl_<rlMAX. Such a mapping is also useful to redistribute collo-

cation points, clustering them in regions of high gradients. In practice, the metric -_-_, computed either
7

analytically, or numerically to spectral accuracy, is incorporated directly into quadrature operator Q.

Finally, we note that Q should be computed initially in double-precision arithmetic to avoid catas-

trophic loss of significance, The double-precision representation is subsequently truncated to single pre-

cision for numerical quadrature via Eq. (27). Since Q is computed but once, the additional computa-

tional effort is minimal.

We close by summarizing briefly the complete algorithm for extracting wall-normal velocity, as

integrated into the spectral collocation boundary-layer algorithm of Pruett and Streett [2]. Following

[2], governing equations (8) are solved for discrete marching steps _0<_1<_2< • • •, each corresponding

to a unique streamwise station. Immediately available from the converged boundary-layer solution at

each fixed _ are the quantities 0, 0_, 0n, and t which appear in the integrands of Eqs. (1 la), (14), and

(24). These integrals are evaluated numerically to spectral accuracy following the quadrature procedure

of Eqs. (27-37). In the discrete approximation, the integral expressions are vector quantities. Also

needed at each discrete _ are certain scalar quantities: for example; f (_) and g (_) in Eqs. (24) of
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Method2, or thecoefficientof Y2o in Eq. (14) of Method 1. These are readily evaluated from the

discrete edge and geometry data "c[,_(x)]. Currently, we use cubic splines for smooth interpolation of "c

as well as for computation of derivatives of the form d'c/dx. Following the evaluation of all necessary

scalar and vector quantities at fixed _, the discrete approximation of "q_ is obtained either from Eqs.

(12-14) in Method 1, or from integral equation (24) in Method 2. Wall-normal velocity is obtained

subsequently from Eq. (10) and the boundary-layer solution (V,F,0). Despite the awkward nature of the

expressions which comprise Methods 1 and 2, their evaluations are straightforward, are computationally

efficient, and involve only the numerical machinery already in place for the solution of boundary-layer

equations (8).

4. CODE VALIDATION

Our purpose here is to offer reasonable validation of the present method. To obtain the results of

this section, we solve Eqs. (8) by the fully-implicit method of Pruett and Streett [2], which has been

modified to incorporate the Levy-Lees transformation (6). We exploit second-order backward

differencing in the time-like dimension, although the method allows up to 5th-order differencing. For

convenience, the marching scheme uses equally-spaced steps in physical space. A further modification

permits the option of either preconditioned Richardson iteration or Newton iteration within each implicit

marching step. Typically, we iterate using the Richardson scheme until the discrete residual is small

enough so that one final (computationally-intensive) Newton iteration achieves "full" convergence. Fol-

lowing convergence of the iteration, the wall-normal velocity is extracted by the spectral collocation

method presented herein. All computations assume that the wall is adiabatic, although the boundary-

layer code permits fixed temperature wall conditions as well. The results shown below were obtained

using 102 (N=101) collocation points in the wall-normal rI direction, and constant increments of

Ax* = 0.1 ft. in the marching direction. The following transformation has been used to map from the

Chebyshev domain _ e I-l,1] to the computational domain 11 e[0,_qMAX], as discussed in the previous

section.

0.5qMaX II-tanh(ff)] (1-fl)

rl(?l) = l_tanh [0.5_(1__) l (38)

F
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In Eq. (38), 6 is a free parameter which controls the strength of stretching. The results shown use

rlMaX=21 and _=0.7, chosen after some numerical experimentation. For a well-resolved grid, the solu-

tion is not particularly sensitive to the choice of _. However, it is important that 1]MAXbe sufficiently

large that the far-field boundary condition does not "pinch" the boundary-layer flow. Our experience is

that rlmzx should be chosen so that y* (rlgax) is 2 to 3 boundary-layer displacement thicknesses from

the wall. We note that 102 collocation points are far more than the 40 or so necessary to obtain 3-digit

"engineering" accuracy. In fact, as will be shown, at this resolution velocity and temperature distribu-

tions at fixed _ are smooth to 13 digits.

We take the flow parameters and the geometry of the validation case from the high-speed

(M_.=8.0) wind-tunnel experiment of Stetson et al on a sharp cone at zero angle of incidence [llJ.

These are:

_=7 ° ; M, =6.8 ; T_=128°R ; Re_=l.43×106ft -_ (39)

where Re_ is the unit Reynolds number based on edge conditions. Except quite near the tip, the flow

on a sharp cone exhibits conditions at the boundary-layer edge which are approximately constant.

Accordingly, we assume that the edge values remain constant in x, and we set reference values equal to

their respective edge values; e.g., u_=u*. We note, however, that both methods for extracting v have

been validated for the fully general case in which both the geometry and edge data vary with x.

Figure 2 compares the radial velocity obtained by the present method with the results of a para-

bolized Navier-Stokes (PNS) calculation using the well-tested code of Korte [12]. The PNS code

exploits finite-difference techniques and is of second-order accuracy in both the marching (axial) s and

cross-stream (radial) r directions. The velocities (u',v') computed by the PNS code are in cartesian

coordinates, and for comparison, the results of the boundary-layer calculation are transformed accord-

ingly. The PNS scheme is fully explicit and the marching step size is the maximum allowed by stabil-

ity (CFL) considerations. The PNS computation uses 150 grid points in the radial dimension, approxi-

mately 30 of which lie within the boundary layer. At this resolution, the PNS calculation is fairly

severely under-resolved in the radial direction as indicated by the clearly visible grid-scale oscillation.
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In fact,ascanbeinferredfromHarris[1],approximately200pointsarenecessaryto fullyresolvethe

boundarylayerregionto engineering(3-digit)accuracyusing2nd-orderfinitedifferencemethods.

Unfortunately,it is impracticalfor existingcomputerresourcestopacksignificantlymorepointswithin

theboundarylayersince,in thefullyexplicitPNScode,themarchingstepsizedecreasesasArff2,

whereArMm is the minimum grid interval in the radial dimension. Similar computational barriers were

encountered when attempting to compare the present method against a compressible Navier-Stokes (NS)

calculation using the finite-volume code of Jacobs [13], for which it was impractical to resolve the flow

to the degree desired. Despite these difficulties, the radial velocities obtained from the PNS and

boundary-layer (BL) computations, which are compared at s=3.28 ft. (1 meter) in Fig. 2, are in reason-

able agreement. The maximum velocity, the boundary-layer edge location, and the far-field decay of v'

all agree well. We note also that the shock obliqueness angle derived by the PNS calculation is about

11°, for which the corresponding post-shock Mach number is 6.8, in concurrence with the experimental

results of Stetson et al and the edge Mach number used for the BL calculation. We further mention

that the (under-resolved) NS [13] and PNS [12] calculations are in close agreement.

The present method has been further validated by Kopriva (in unpublished work), who has

employed the spectral-collocation BL code to check recent adaptations of his spectral multidomain code

(inviscid) [14] to incorporate the viscous terms of the CNSE. Agreement between Kopriva's

moderately-resolved NS computations and the present method is quite good for test cases which include

Mach 2 flow over a circular cylinder and Mach 2.2 flow over a flat plate.

The previous checks against existing codes assure us that there are no grievous errors in the

current method of extracting wall-normal velocity. We turn now to self-consistency checks. One

motivation for developing independent methods for evaluating r h is to provide a check otherwise una-

vailable. For the same test case as before, with parameter values given in Eqs. (39), Fig. 3 compares

rh at x* =2.0 ft. as computed by Methods 1 and 2. These results appear virtually identical in Fig. 3,

and, in fact, they agree to at least 11 significant digits at every gridpoint.

As mentioned in the introduction, the current method also leaves the continuity equation available

as a check on the quality of the discrete solution. For later use, it is preferable to expand continuity

=_.._
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Eq. (la), whereby we obtain the following expression, which is valid for flat-plate, hollow cylinder, and

cone geometry:

.ousin j-P_Z_C_ 
3x 0y + J r "_ r = 0 (40)

Figure 4 presents the discrete residual of Eq. (40) at x* =3.0 ft. along the cone, computed by summing

the four terms on the left hand side. Again, the parameter values are those given in Eqs. (39). Deriva-

tives are evaluated in computational space by the appropriate chain rules, thereby avoiding interpolation

in physical space. The continuity equation is satisfied to approximately 11 orders of magnitude. That

there remains considerable structure in the wall-normal distribution of the residuals suggests that, with

further tuning of ¢_ and N, one could likely drive the residual at least another order of magnitude

toward machine zero (10-14).

One final measure of the quality of the spectral numerical method is the decay of the spectra

(refer to Eq. 32a) as shown at station x* =3.0 ft. along the cone in Fig. 5. The decay of the tempera-

ture, u-velocity, and v-velocity spectra each by at least 13 orders of magnitude implies that the solution

is smooth to nearly the full 14-digit precision of the (Cray 2) machine. The linear decay rate on the

logarithmic scale is indicative of "spectral convergence", by which we mean that truncation error decays

faster than any finite power of 1IN as N _.

Our interest in an accurate and smooth solution is not just academic. Analyses of stability based

on parallel linear stability theory result in eigenvalue problems which require first and second partial

derivatives with respect to y of both the mean u-velocity and the mean temperature. In addition, ana-

lyses based on non-parallel theory require the mean v-velocity and its derivatives as well. For N=101,

each spectrally-accurate numerical differentiation of the boundary-layer solution results in a loss of

significance of 2-3 digits due to the unavoidable magnification of round-off errors. Yet because of the

initially high quality of the solution, we obtain first and second derivatives which are smooth to at least

10 and 7 digits, respectively.

Finally, we comment briefly on computational efficiency. For N=101, the spectral collocation

method of Pruett and Slreett [2] modified for the Levy-Lees transformation (6) requires slightly less
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thanoneCPU-secondpermarchingsteponaCray2 supercomputerto solveboundary-layerequations

(8). Of thissecond,extractionof thewall-normalvelocitybyMethod2consumesa smallpercentage,

whereasthecomputationalrequirementsof Method1arevirtuallynegligible.It wasoriginallythought

thattheintegralequationmethod(Method2)mightenjoysomeadvantagesin thedistributionof error.

However,fromthedataforFig.3,it appearsthatanysuchadvantageis insignificant.

5. APPLICATION

We turn now to an application of the method to a problem of both longstanding and immediate

interest which concerns the stability characteristics of the boundary layers of cylinders and cones rela-

tive to those of the more commonly studied flat plate. While it is beyond the scope of this paper to

address stability theory per se, some light is shed on stability issues by comparing boundary-layer

"profiles" for the flat plate, the hollow cylinder, and the cone.

Here we consider the same flow parameters and cone geometry given in Eqs. (39). Presented for

comparison, the hollow cylinder can be regarded as the axisymmetric equivalent of the flat plate (that

is, the boundary layer is assumed to have no thickness at the sharp leading edge). The radius of the

cylinder is taken to be ro=0.3684 ft., equivalent to that of the cone at station x* =3.0 ft. For reference,

Fig. 6 compares the growth of the three boundary layers in terms of displacement thickness 8" as

defined below [3]:

pu .: f 1 - dy (41)
8" [1 + 2-"_j b[roj P:":

As is well known, the self-similar boundary layer on the fiat plate grows proportionately to x'_"r. On

the other hand, the boundary layer along the cylinder is non-similar because the "curvature" K,

quantified by the ratio K=8*/r*o, increases in the streamwise direction due to the growth of _*. Pro-

vided K,_I, as is the case here, the displacement thickness on the cylinder exhibits growth much like

that of the flat plate. Also as is well known, the boundary layer on the cone asymptotes to a growth

rate 1/'_r3 times that of the fiat plate, as predicted by the Mangler transformation [15]. Mangler's theory

=

z
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ignores transverse curvature and is invalid near the sharp tip of the cone where K is large. As noted by

Malik and Spall [16], the curvature K along the cone decreases in the streamwise direction, in contrast

to its increase 'along the cylinder. As they also note, the effect on stability of the disparity in scales is

that the boundary layer on the cone supports higher disturbance frequencies.

Figures 7a-c compare, respectively, the temperature, streamwise velocity, and wall-normal velo-

city distributions of the cone, cylinder, and flat-plate boundary layers at x*=3.0 ft. When the wall-

normal coordinate y* is scaled by the appropriate displacement thickness, the temperature and stream-

wise velocity distributions of the flat plate, hollow cylinder, and cone "collapse" and are virtually coin-

cident. There is a slight effect due to transverse curvature which tends to produce a slightly "fuller"

u-velocity profile and a "thinner" temperature profile with increasing K. For the parameter values of

the test case, the curvature K values at x*=3.0 ft. are 0.0, 0.0744, and 0.0440, for the flat plate,

cylinder, and cone, respectively. Our principle interest lies in comparison of the wall-normal velocities.

Whereas the v-velocity in the flat-plate boundary layer is constant at the edge, that of the cylinder

decays like 1/r in the far field. Otherwise, they are qualitatively similar. In contrast to the hollow

cylinder and flat plate, the cone has v-velocity which changes sign, is negative for large y, and has a

large, nearly constant gradient in the far field. For comparison Fig. 7c also shows the inviscid solution

for the wall-normal velocity, obtained from the code of Marconi and co-workers [17]. Note that the

far-field boundary-layer solution and the inviscid solution have similar trends as anticipated, lending

additional confidence in the method.

To highlight the influence of the differences in wall-normal velocity which are due to geometry, it

is useful to examine the individu_ contributions of each of the four terms on the left hand side of con-

tinuity equation (40), as shown in Figs. 8. For the flat plate (Fig. 8a), the third and Iburth terms vanish,

and the first and second terms exactly balance. For the the cylinder (Fig. 8b) there is a small non-zero

contribution from the fourth term, but the overall picture closely resembles that of the fiat plate. In

contrast, for the cone (Fig. 8c), terms 1 and 2 approximately balance in the near-wall region. However,

the third term contains a large contribution in the far field which is offset approximately by the far-field

contribution of the second term.
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Figure8chasimplicationsforclassicallinearstabilitytheory,inwhichtheparallel-flowapproxi-

mationplaysanimportantrole. In theory,theparaUel-flowapproximationarisesfromtherecognition

thatthe wall-layermeanflowevolvesslowlyin x relative to the scale of a typical disturbance

wavelength, in which case certain terms in the linearized disturbance equations are "small" and can rea-

sonably be neglected. In practice (i.e., in stability codes), however, the parallel-flow approximation is

typically implemented by requiring of the mean flow that

v = 0 and _x - 0 (42)

Condition (42) is self-consistent for the boundary-layer flow along a flat plate or a hollow cylinder in

the sense that a parallel mean flow can simultaneously satisfy continuity Eq. (40) and approximation

(42). From Fig. 8c, however, we find that Eqs. (40) and (42) are inconsistent for the cone, since the

term pu sin_/r does not vanish under approximation (42). Violation of the continuity equation by the

assumption of parallelism is particularly noxious since it leads to inconsistency between the conserva-

tive and nonconservarive formulations of the linearized disturbance equations [18]. In fact, Pruett, Ng,

and Erlebacher [18] have shown rigorously that there is no self-consistent parallel-flow approximation

for the stability of the flow along a cone. If the stability of a conical flow is properly treated only by

methods which allow non-parallelism, then the wall-normal velocity assumes importance. Conse-

quently, the care which has been devoted here to securing an accurate and smooth determination of v is

not ill spent.

6. CONCLUSIONS

The fully implicit, spectral collocation method developed by Pruett and Streett [2] for solution of

the compressible boundary-layer equations has been extended to incorporate the Levy-Lees [3] transfor-

marion and spectrally-accurate evaluation of the wall-normal velocity. The Levy-Lees transformation is

essential tO the stability of the numerical method for certain classes of compressible boundary-layer

flows; however, it renders determination of the wall-normal (v) velocity non-trivial. Two methods of

determining v are presented and are shown to be numerically equivalent. The generalized algorithm is

m

m

m

B
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valid for non-similar, two-dhnensional or axisymmetric boundary-layer flow with varying edge condi-

tions. Computation on a highly resolved mesh results in a discrete solution which satisfies the con-

tinuity equation nearly to machine precision, while requiring only about one second of CPU time per

marching step on a Cray 2 supercomputer. Because of its generality, and the accuracy and smoothness

of the discrete solution, the present method is well suited to providing the mean-flow velocity and tem-

perature distributions needed for analyses of the stability of compressible boundary-layer flows, whether

by classical linear stability theory or by recent methods which treat non-parallelism of the mean flow.

Since mean-flow non-parallelism can significantly affect the stability of high-speed, wall-bounded flows

[5], the contribution of wall-normal velocity should not be cavalierly disregarded.
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APPENDIX

For completeness, we describe briefly a solution procedure for the discrete analog of integral Eq.

(24a). For fixed 5, Eq. (24a) has the form

71

q (1"1)= lw (rl)q (rl)drl + p (1"1)
(A1)

Note, by inspection of Eqs. (24), q(0) = 0. From (A1) we obtain

q(rln) - q(rln-1) = f w(rl)q(rl)drl + (P, -P,-1) (n = 1,2,3,...,N) (A2)
"qn-1

Following the notations regarding Eqs. (26-28), the discrete approximation of Eq. (A2) is

M_I = Q1W_I + Aff'1

where W is the NxN diagonal "weighting" matrix

W =

W 1 W 2 WN l

and M is the NxN bidiagonal matrix

M =

1

-1 1

-1 1

-1

(A3)

(A4)

(A5)

Q l is the NxN matrix formed by eliminating the first column of the Nx(N+I) numerical quadrature

operator Q (refer to Eq. 37), and Aft1 is the N-vector whose components are

Ap,, = p,-p,,< (n = 1,2,3,...,N). Simplifying (A3), we obtain _1 as the solution to the Nth-order

Z
==
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linear system

A i_1 = Aft1 where A - M - Q lW (A6)
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